
AIAA-98-4532

MANAGING SHARED MEMORY SPACES IN AN
OBJECT-ORIENTED REAL-TIME SIMULATION

David W. Geyer, Michael M. Madden�, Patricia C. Glaab,

Kevin Cunningham�, P. Sean Kenney, Richard A. Leslie

Unisys Corporation

NASA Langley Research Center

MS 169

Hampton, Virginia 23681

Abstract

Sharing memory spaces between parallel processes

is a common practice in a real-time simulation environ-

ment. In an environment where parallel processes can

exist on the same machine or on different machines, it is

a challenge to develop and maintain reusable software

that interfaces with shared memory spaces. The two

main problems involved in dealing with shared memory

spaces are: 1) providing platform independent access to

the memory space, and 2) providing to all processes a

consistent view of the structure and content of the mem-

ory space. Object-oriented techniques were used to cre-

ate a software architecture designed to manage shared

memory spaces. Object-oriented design patterns were

used to present client code with a conceptual model of

shared memory spaces while concealing the underly-

ing implementation details. The resulting architecture is

largely computing platform independent, with platform

specific code being isolated to a few selected classes.

The design was implemented in C++ for the NASA Lan-

gley Standard Real-Time Simulation (LaSRS++) Appli-

cation Framework. This paper provides an overview of

the design and implementation of the LaSRS++ shared

memory management software.

Introduction

This paper describes a general object-oriented soft-

ware architecture designed to manage shared memory

spaces in a platform independent manner. This archi-

tecture focuses on the management of specific blocks of

memory within a shared memory space. The software is

designed to allow client code to query for existing mem-

ory blocks or to create new memory blocks. There is no

provision (currently) to delete existing memory blocks.

The architecture only provides the database functionality

of keeping track of existing memory blocks and creat-

ing new memory blocks. It is the responsibility of other

classes in the LaSRS++ framework to deal with how the

memory blocks are actually used by client code.

Shared Memory Spaces

A process, or task, is the executing instance of a

program. Each process is composed of an addressable

memory space, a set of machine instructions to execute,

and other entities maintained by the operating system. It

is possible to map, or overlay, a portion of this mem-

ory space with the memory space from another process.

Most modern operating systems provide mechanisms to

perform this mapping with another process on the same

machine. This mapping is known as shared memory

and is part of the more general operating system facility

known as Interprocess Communication. Both processes

view the shared memory space as part of their own ad-

dressable memory space. As a result, any changes to the

contents of the shared memory space by one process are

�Senior Member, AIAA
Copyright c1998 by the authors. Published by the American

Institute of Aeronautics and Astronautics, Inc. with permission.

1
American Institute of Aeronautics and Astronautics



visible to the other process. This type of shared memory

will be referred to as physical shared memory.

A similar type of shared memory space can be

achieved between processes on different machines with

the use of specialized hardware. One example of this

type of specialized hardware uses a networking concept

known as replicated shared memory.1 Replicated shared

memory uses a serial ring network with local memory

modules at each network node. Device driver software

allows a given process to map the local replicated mem-

ory for the respective node into the memory space of the

process. This makes the replicated memory appear just

like physical shared memory. When a process writes a

value to a location in the replicated memory space, the

network card reflects the value to the replicated memory

space of all the other nodes in the ring. This is accom-

plished by transmitting both the value and the memory

offset of the value across the network. As a result, the

value is written to the same memory offset in all of the

cards on the network.

It is also possible to pass interrupts between CPUs

using a replicated shared memory network. A given CPU

can transmit and/or receive interrupts based on changes

made to shared memory locations. The same mechanism

that is used to transmit data is also used to transmit in-

terrupts to every CPU on the ring. It is up to the soft-

ware running on each and every CPU to determine the

effect of the interrupt. A CPU will only receive inter-

rupts for shared memory locations for which the CPU

actually chooses to receive interrupts. A CPU can ignore

or handle interrupts based on its own criteria.

The replicated shared memory approach combines

the benefits of physical shared memory with a fast

message passing network. The result is fast inter-

node communication speed with little software overhead.

Bohman1 provides a more detailed discussion of the ben-

efits of combining physical shared memory with message

passing.

SCRAMNet+ Network

The Shared Common Random Access Memory

Network (SCRAMNet+), produced by Systran Corpora-

tion, is a commercial implementation of a truly general

purpose replicated shared memory network. The nodes

in a SCRAMNet+ ring can be connected via coaxial or

fiber optic cable. The delays incurred when communi-

cating between nodes is on the order of microseconds.

Systran provides a library of low-level C callable

functions for the various operating systems that might

be used on a SCRAMNet+ ring. The interface to these

functions can be different, depending upon the platform

that is being used. In order to write client code that is as

platform independent as possible, it is necessary to nor-

malize the interface to the SCRAMNet+ low-level func-

tionality.

Platform Independent SCRAMNet+ Access

A SCRAMNet+ network allows a group of hetero-

geneous processors to function together as if part of a

single multiprocessing machine. Each different machine

on the SCRAMNet+ ring often uses its own operating

system and a distinct version of the SCRAMNet+ device

driver. Using object-oriented techniques, it is possible

to present users on all platforms with a common low-

level interface to SCRAMNet+ but allow the actual low-

level implementation to vary according to the platform

being used. This is accomplished by using several differ-

ent object-oriented design patterns.2 Design patterns de-

scribe simple and elegant solutions to specific problems

in object-oriented software design.

Bridge Pattern

The Bridge pattern decouples an abstraction from its

implementation. This design uses the Bridge pattern to

isolate client code from the platform specific details of a

specific implementation. The approach is to have clients

use an abstraction object that forwards its public mem-

ber function calls to a hidden platform specific imple-

mentation object. The abstraction object uses the imple-

mentation object through the pure polymorphic interface

defined by the abstract implementation base class. In

this case, a SCRAMNet+ interface object interacts with

a platform specific SCRAMNet+ implementation object

through a polymorphic interface. An appropriate con-

crete implementation class is defined for each platform

being used on the SCRAMNet+ ring. The appropriate

concrete implementation object for a given platform is

selected at run-time.

2
American Institute of Aeronautics and Astronautics



Abstract Factory Pattern

The Abstract Factory pattern is used to create the cor-

rect instance of the platform specific SCRAMNet+ im-

plementation object at run-time. This creational pattern

provides an interface for creating families of related ob-

jects without specifying their concrete classes. In this

case, the family of objects are the platform specific im-

plementation objects. The abstract factory object con-

tains knowledge of the specific platform that is being

used. The constructor for the SCRAMNet+ interface ob-

ject invokes the makeScramnetImpl member func-

tion of the abstract factory object. This member function

uses knowledge of the specific platform to return the ap-

propriate implementation object for the given platform.

This specific implementation object is stored as a hidden

attribute of the SCRAMNet+ interface object.

Singleton Pattern

The Singleton creational pattern is used whenever it

is necessary to ensure a class only has one instance, and

provide a global point of access to the single instance.

The SCRAMNet+ network used for real-time simulation

at NASA Langley is designed such that any given ma-

chine contains at most one SCRAMNet+ network card.

For any process, there is a one-to-one correspondence

between the SCRAMNet+ interface class and the actual

SCRAMNet+ network card. Therefore, any given pro-

cess on such a machine only needs a single instance of

the SCRAMNet+ interface class. So, the SCRAMNet+

interface class is implemented as a singleton.

For simplicity, the Singleton pattern is also used

for the abstract factory that creates the SCRAMNet+

implementation object. This abstract factory is really

just a constructor-time detail of the SCRAMNet+ in-

terface class. Using the Singleton pattern allows the

SCRAMNet+ interface class constructor to access the ab-

stract factory directly.

Figure 1 shows the class diagram for the

SCRAMNet+ low-level interface software. Notes are

included to point out the classes that utilize the various

design patterns.

Figure 1: SCRAMNet+ Low-Level Interface Class Diagram

3
American Institute of Aeronautics and Astronautics



Design Advantages

This design has several advantages that address the

issues of maintainability and portability:

1. Client code is decoupled from the platform spe-

cific SCRAMNet+ implementation details. This

decoupling allows changes in the SCRAMNet+

implementation classes to have no impact on the

client code; i.e., the client code does not need

to be recompiled if the implementation changes.

By coupling client code only to a common inter-

face, the client code becomes platform indepen-

dent. This allows client code to be portable to any

platform supported by the SCRAMNet+ interface

class.

2. Only a single class needs to be written to support a

new platform. Adding support for a new platform

involves two steps:

(a) Write a new SCRAMNet+ implementation

class that interfaces with the platform spe-

cific SCRAMNet+ device driver

(b) Add to the SCRAMNet+ implementation ab-

stract factory the capability to create the new

SCRAMNet+ implementation object

3. Creation of platform specific objects can be iso-

lated to a single abstract factory object. The

SCRAMNet+ interface class only references the

abstract SCRAMNet+ implementation base class.

All concrete implementation details are confined

to the implementation abstract factory.

Managing Shared Memory

The problem of managing a shared memory space in-

volves providing all processes a consistent view of the

structure and content of the memory space. It is assumed

that a memory space is being shared between processes

on the same or different machines. It is also assumed that

the shared memory space is going to be subdivided into

multiple separate memory blocks. Therefore, the pro-

cesses are going to require:

� the ability to acquire information concerning the

memory blocks inside the memory space

� the ability to create new memory blocks inside the

memory space

Design Strategy

The strategy used to satisfy these requirements in-

volves using part of the shared memory space as a record

keeping area to keep track of the allocated memory

blocks. As the shared memory space is subdivided into

smaller blocks, a record is generated for each memory

block and stored in the record keeping area. Each record

contains: block name, block type, block size in bytes,

and block offset from starting address of the shared mem-

ory space. The record keeping area allows different pro-

cesses access to information concerning the current us-

age of the shared memory space.

The shared memory space is divided into the follow-

ing three areas:

1. System Area

This area has a fixed size area and is used for data

that pertains to all memory blocks.

2. Data Table Area

This area is a data structure composed of book-

keeping values and a variable-length list of records

that describe the arrangement of data blocks in the

Data Area. Each record describes a separate, dis-

tinct memory block.

Each record is composed of:

� a fixed sized string for the block name

� an integer to denote a user defined type for

the memory block

� the size of the block in bytes

� the offset of the block from the beginning of

the memory space

3. Data Area

This area is a where the actual memory blocks are

allocated.

4
American Institute of Aeronautics and Astronautics



0x0000

0x0004

0x0008

0x000C

state value

clock value

test word

’s’ ’o’ ’m’ ’e’

’ ’ ’b’ ’l’ ’o’

’c’ ’k’ ’ ’ ’n’

’a’ ’m’ ’e’ ’\0’

’\0’ ’\0’ ’\0’ ’\0’

’\0’ ’\0’ ’\0’ ’\0’

’\0’ ’\0’ ’\0’ ’\0’

’\0’ ’\0’ ’\0’ ’\0’

type

size in bytes

offset in bytes

0x0018

data area

system area

free memory size in bytes

next free data area address

number of table entries

0x0034

data table area

Figure 2: Three area partitioning of shared memory space

Figure 2 shows the internal structure of a sample

managed memory space. The base address of the mem-

ory space is at the bottom of the diagram and the hex-

adecimal numbers on the right side are offsets from the

base address. The system area is always located at the be-

ginning of the shared memory space. New data records

are added following the system and bookkeeping areas

toward the end of the memory space. New memory

blocks are sequentially allocated from the end of the

memory space toward the data records. This arrange-

ment gives the memory block management scheme max-

imum flexibility in allocating a variable number of vari-

able length memory blocks.

High Level Design

The three area strategy described above is encap-

sulated in the MemoryBlockManager class. A

MemoryBlockManager object applies the strategy to

any raw memory space with a known base address and

size in bytes. The MemoryBlock class is an abstrac-

tion of an allocated block of memory. Every memory

block has an associated name, a base address and a size

5
American Institute of Aeronautics and Astronautics



in bytes. The interface of the MemoryBlockManager

class uses MemoryBlock objects to convey information

about allocated blocks to client code.

The MemoryBlockManager class responds to

successful memory block requests by returning one or

more MemoryBlock objects, depending on the request

criteria. The request criteria can be:

� memory block name

� all memory blocks of a specified type

� all memory blocks associated with a given ma-

chine name

� all memory blocks of a specified type associated

with a given machine name

� all memory blocks in the memory space

A single MemoryBlock object is returned by a suc-

cessful create memory block call. Client code provides

the new memory block name, type and size in bytes.

Managing SCRAMNet+ Memory

Managing a SCRAMNet+ memory space is now sim-

ply a matter of combining the SCRAMNet+ interface

object with an instance of a MemoryBlockManager

object. The ScramnetMemoryBlock class (de-

rived from the MemoryBlock class) is also available

that combines the notion of a memory block with the

ability to interrupt enable/disable SCRAMNet+ mem-

ory locations. This abstraction is useful in decou-

pling client code from the SCRAMNet+ interface sin-

gleton. In practice, client code usually requests a

ScramnetMemoryBlock object and selects memory

locations inside the memory block to either send or re-

ceive interrupts. The client code does not need ac-

cess to the majority of the SCRAMNet+ interface. The

ScramnetMemoryBlock class combines this func-

tionality into a single, easy to use class.

There are situations where it is necessary to pro-

hibit memory block creation for certain processes on

a SCRAMNet+ ring. This can occur for processes

that are responsible only for monitoring or recording

SCRAMNet+ activity. It can also occur in cases where

centralized control of memory block creation is needed.

The creation of memory blocks may be part of the over-

all system initialization process. In order to facilitate

this level of restricted access, two separate, but related,

classes are available.

The ScramnetReader class provides the follow-

ing functionality:

� uses the SCRAMNet+ interface object to ap-

ply a MemoryBlockManager object to the

SCRAMNet+ memory space

� forwards existing memory block requests to the

same MemoryBlockManager object

� excludes the creation of memory blocks from its

own interface to ensure access only to existing

memory blocks

� provides an enumerated list of types for the mem-

ory blocks in the SCRAMNet+ memory space

(These enumerators are used when requesting a

memory block by type or when creating a mem-

ory block)

The ScramnetReader class uses the Singleton

pattern in order to maintain a one-to-one correspondence

with the SCRAMNet+ interface object and hence the sin-

gle SCRAMNet+ network card in the machine.

The ScramnetManager class uses the

ScramnetReader singleton to provide access to

existing memory blocks. ScramnetManager

also provides a create memory block request fa-

cility for client code by forwarding such requests

to the MemoryBlockManager object used by

ScramnetReader. The ScramnetManager

class uses the Singleton pattern for the same

reason as the ScramnetReader class. Both

ScramnetReader and ScramnetManager re-

turn ScramnetMemoryBlock (i.e., specialized

MemoryBlock) objects in response to request/create

memory block calls.

Figure 3 presents a detailed class diagram for the

SCRAMNet+ Memory Management software.

6
American Institute of Aeronautics and Astronautics



Figure 3: SCRAMNet+ Memory Management Class Diagram

Implementation Issues

Figure 4 presents a scenario diagram illustrat-

ing how the ScramnetReader singleton forwards

an existing memory block request to the more

generic MemoryBlockManager object. In simi-

lar fashion, Figure 5 is a scenario diagram illus-

trating how ScramnerManager singleton forwards

a new memory block creation request to the same

MemoryBlockManager object.

SCRAMNet+ objects are passive, so there is no direct

communication between SCRAMNet+ objects executing

on different processors. There is no notion of mutual ex-

clusion between different nodes on a SCRAMNet+ ring.

This means that a given node can not acquire exclusive

access to a SCRAMNet+ memory location. There is no

guarantee that a value written to a SCRAMNet+ memory

location will not be overwritten by some other node on

the ring. This issue is not dealt with by the SCRAMNet+

memory management software. Another layer of soft-

ware is required that controls when the memory manage-

ment objects are constructed and used. The system area

at the start of the SCRAMNet+ memory space can be

used transmit communication protocol information be-

tween SCRAMNet+ nodes.

One way to handle this issue is to have only one node

in the ring be responsible for creating new SCRAMNet+

memory blocks via ScramnetManager. All of the

other nodes on the ring access existing memory blocks

using ScramnetReader.

7
American Institute of Aeronautics and Astronautics



Figure 4: Requesting an existing SCRAMNet+ memory block by name

Figure 5: Creating a new SCRAMNet+ memory block

8
American Institute of Aeronautics and Astronautics



Conclusions

A general-purpose method for managing shared mem-

ory spaces has been developed in an object-oriented en-

vironment. This management scheme is designed to be

platform independent and has been utilized on a variety

of different computing systems. The design of the soft-

ware is constructed using well known object-oriented de-

sign patterns.

An object-oriented design is presented that normal-

izes access to SCRAMNet+ hardware across a group of

heterogeneous computing platforms. Platform specific

SCRAMNet+ code is isolated from the SCRAMNet+ in-

terface code. This allows for greater reuse of client code

that uses SCRAMNet+ since the client code is not di-

rectly dependent on the platform specific SCRAMNet+

code.

This general shared memory management design and

the SCRAMNet+ low-level interface design are combined

as the basis of a specific design to manage SCRAMNet+

memory spaces. The specific design uses a combina-

tion of composition and inheritance to achieve the de-

sired functionality.

Bibliography

[1] T. Bohman. Shared-memory computing architec-

tures for real-time simulation - simplicity and ele-

gance. Technical Report D-T-SP-TPAIAA01-A-0-

A1, Systran Corporation, February 1996.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlis-

sides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Publish-

ing Company, Reading, Massachusetts, 1995.

[3] R. Martin. Designing Object-Oriented C++ Applica-

tions Using the Booch Method. Prentice-Hall, Inc.,

1995. ISBN 0-13-203837-4.

[4] S. Meyers. Effective C++. Addison-Wesley Publish-

ing Company, 1992. ISBN 0-201-92488-9.

[5] T Quatrani. Visual Modeling With Rational Rose and

UML. Addison-Wesley Publishing Company, 1998.

ISBN 0-201-31016-3.

[6] B. Stroustrup. The C++ Programming Language.

Addison-Wesley Publishing Company, third edition,

1997. ISBN 0-201-88954-4.

[7] Systran Corporation. SCRAMNet Network Program-

mer’s Reference Guide, June 1996. Document No.

C-T-MR-PROGREF#-A-0-A4.

9
American Institute of Aeronautics and Astronautics


